skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petrucco, Claudia A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morphogenesis in fungi and animals is directed by polarization of small GTPases Cdc42 and Rac. In the budding yeastSaccharomyces cerevisiaecompetition between polarity patches results in one polarized patch and the growth of a single bud. Here, we describe cell polarity in the yeastAureobasidium pullulans, which establishes multiple coexisting polarity sites yielding multiple buds during a single cell division cycle. Polarity machinery components oscillate in their abundance in these coexisting sites but do so independently of one another, pointing to a lack of global coupling between sites. Previous theoretical work has demonstrated that negative feedback in a polarity circuit could promote coexistence of multiple polarity sites, and time-delayed negative feedback is known to cause oscillations. We show that both these features of negative feedback depend on a protein we identified as Pak1, and that Pak1 requires Rac1 but not Cdc42 for its localization. This work shows how conserved signaling networks can be modulated for distinct morphogenic programs even within the constraints of fungal budding. 
    more » « less
    Free, publicly-accessible full text available December 29, 2025
  2. Martin, Sophie (Ed.)
    Aureobasidium pullulans is a ubiquitous fungus with a wide variety of morphologies and growth modes including “typical” single-budding yeast, and interestingly, larger multinucleate yeast than can make multiple buds in a single cell cycle. The study of A. pullulans promises to uncover novel cell biology, but currently tools are lacking to achieve this goal. Here, we describe initial components of a cell biology toolkit for A. pullulans, which is used to express and image fluorescent probes for nuclei as well as components of the cytoskeleton. These tools allowed live-cell imaging of the multinucleate and multibudding cycles, revealing highly synchronous mitoses in multinucleate yeast that occur in a semiopen manner with an intact but permeable nuclear envelope. These findings open the door to using this ubiquitous polyextremotolerant fungus as a model for evolutionary cell biology. 
    more » « less